

BEAMEB

GenlSys Team October 28th, 2020

Proximity Effect in E-Beam Lithography

Overview and Agenda

PEC Webinar Part 4 - 10/2020

Please note that this session will be recorded (may be discoverable in legal matters). By joining these webinar sessions, you automatically consent to such recordings. If you do not consent to being recorded, do not join the session.

Pro SEM MASKER

LAB TRACER

Webinar Outline

Part	Subject	Date
1	Electron Scattering and Proximity Effect	07-Oct-2020, 6:00pm CEST, 12:00pm EDT, 9:00am PDT
2	Dose PEC Algorithm and Parameter	14-Oct-2020, 6:00pm CEST, 12:00pm EDT, 9:00am PDT
3	Optimization of Dose PEC Parameter	21-Oct-2020, 6:00pm CEST, 12:00pm EDT, 9:00am PDT
4	Process Effect, Calibration and Correction	28-Oct-2020, 5:00pm CET, 12:00pm EDT, 9:00am PDT
5	Shape PEC – "ODUS" Contrast Enhancement	04-Nov-2020, 6:00pm CET, 12:00pm EST, 9:00am PST
	Break	11-Nov-2020 No Session
6	3D Surface PEC for greyscale lithography	18-Nov-2020, 6:00pm CET, 12:00pm EST, 9:00am PST
	Thanksgiving Week	25-Nov-2020 No Session
7	T-Gate PEC	02-Dec-2020, 6:00pm CET, 12:00pm EST, 9:00am PST

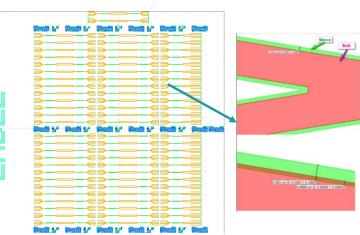
• The webinar series will explain one of the most important techniques in advanced e-beam lithography. Modern E-beam systems are able to form small spot sizes in nm range. In principle this enables to achieve feature sizes in nm-range. In practice this is limited by physics, chemistry and tool limitations...

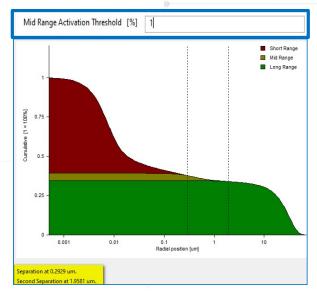
2

Rick Bojko, Ulrich Hofmann October 28th, 2020

Proximity Effect in E-Beam Lithography

Part 4: Process Effect Calibration and Correction

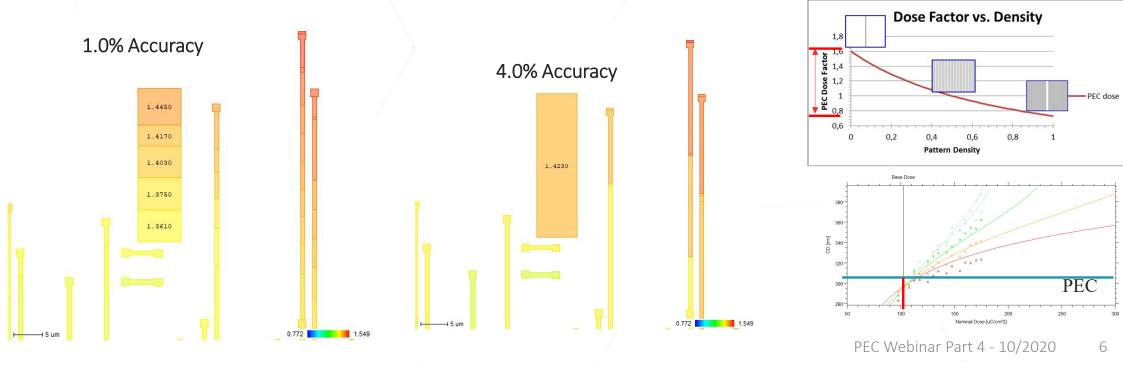

Outline


- Part 3 Summary: Dose PEC Parameters
- Process Effects and Major Parameters
- Calibration Procedure
- Advanced Model Parameters
- Summary
- Q&A

General Dose PEC Parameters

- Include all (and only) pattern to be exposed into the resist
 - PEC does maintain layers (e.g. for bulk-sleeve, writing order control)
 - Include non-critical layer in PEC, but exclude LR fracturing assigns on dose to the feature and considers energy contribution
 - Non critical out of influence range (pads, label,) may be excluded
- PEC can be only as good as the correction function (PSF)
 - Monte-Carlo (table defined) PSF is preferred
 - Including Short Range correction requires "Effective Short Range Blur" (calibrated by TRACER)
 - Adding an additional midrange process blur (e.g. for HSQ) is possible (can be calibrated by TRACER)

5

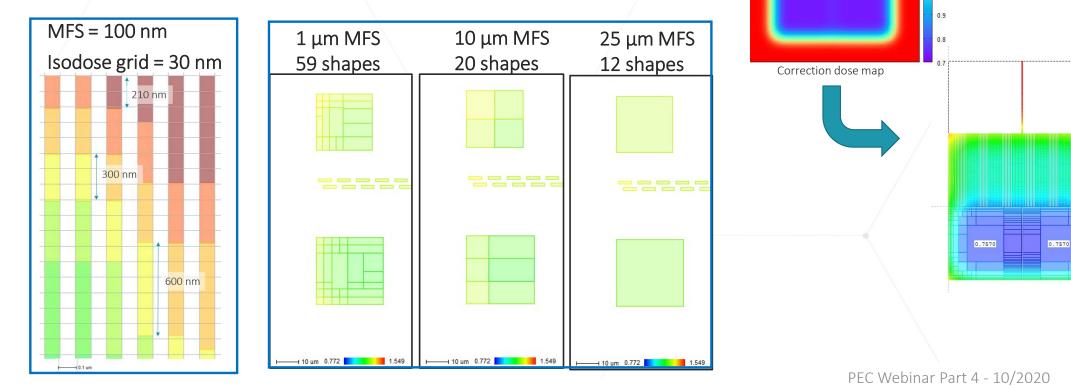

Dose Factor Accuracy

No PEC

Applied Dose [uC/cm*2]

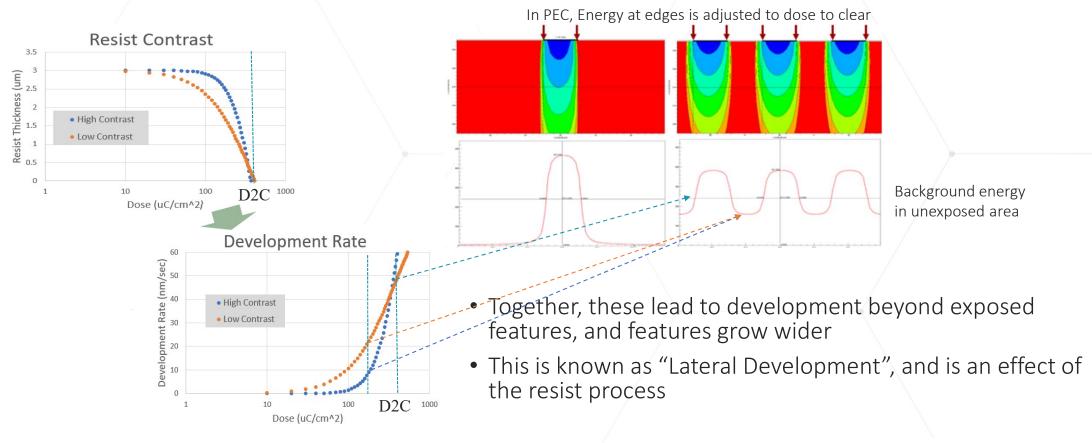
E 340-

- The required dose range (PSF dependent) is split to "Dose Classes"
- Dose classes are automatically generated
 - Either via dose accuracy or manually by predefined dose classes
- Tradeoff between litho quality and shape count (write time)
 - Dose accuracy lower limited set by the system capability (typically 1%)



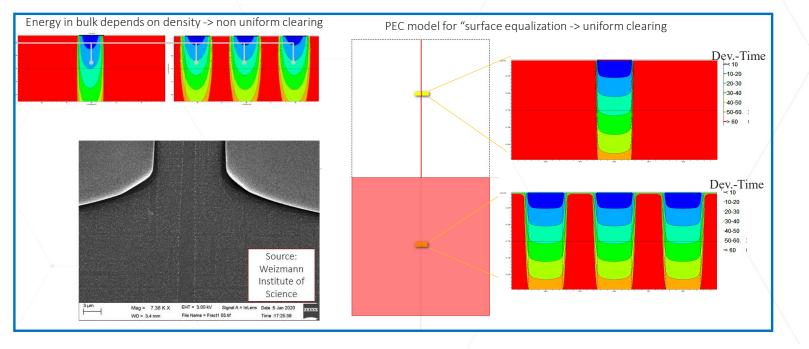
Physical PEC Fracturing

7


- The layout is locally fractured along the discretized dose map (iso-dose lines from dose classes)
 - "Iso-Dose" grid and Minimum Fracture Size (MFS) control location of cuts and number of shapes
 - Pre-fracturing allow to optimize number of shapes vs. accuracy

Origin of Lateral Development

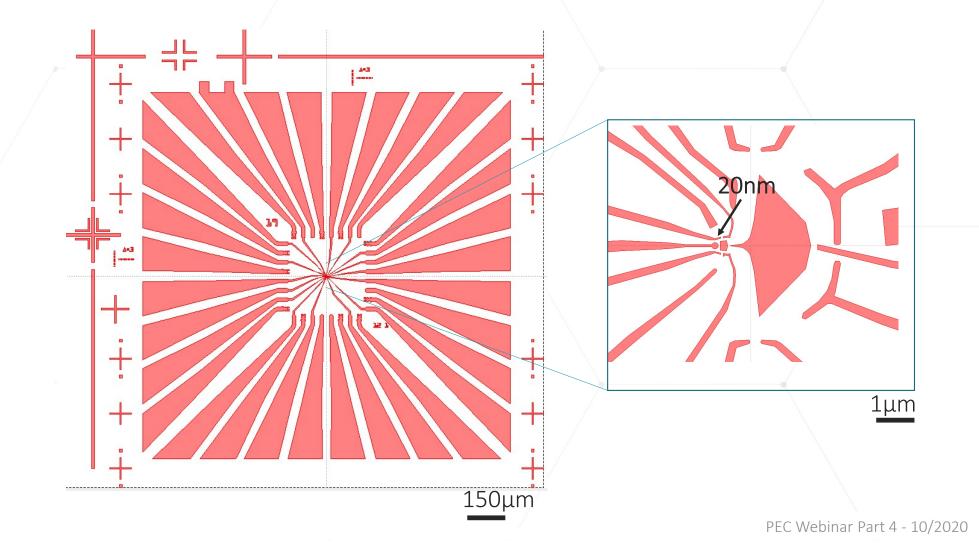
- Energy scatters beyond the pattern edges, leading to unintended partial exposure
- Practical resists have finite contrast; resist develops even for doses well below the dose to clear



Advanced Process Correction Parameters

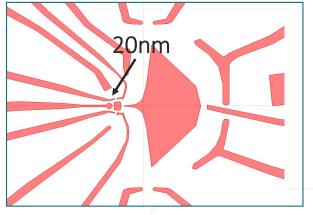
- Resist development effects require additional correction
- Lateral development is corrected by density-dependent bias
- Resist residues due to low energy in areas of high density (large pads) may require correction towards "uniform clearing", a mix of OC/UC
- These are calibrated from experimental measurements using TRACER

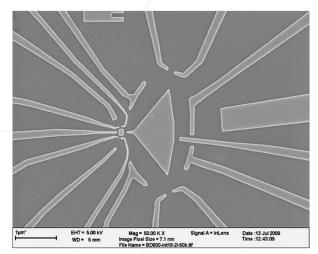
0.50000 0.02	PSF-density [·]	Bias (um)
0.05	0.000000	0.01
	0.500000	0.02
Insert Row Delete Row	1.000000	0.05
insertition believe non	Insert Row	Delete Row



Outline

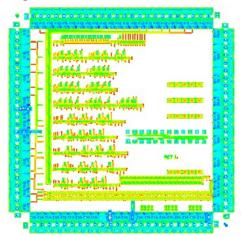
- Part 3 Summary: Dose PEC Parameter
- Process Effects and Major Parameter
 - From Design to Sample
 - Base Dose, Process Biases, Effective Blur and their Coupling
 - Calibration Strategy
- Calibration Procedure
- Advanced Model Parameter
- Summary
- Q&A

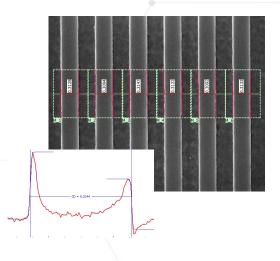

From Design To Sample



From Design To Sample

- What we see on SEM is the result of a complex process
 - Dataprep
 - Exposure
 - Writing strategy (fields, shape filling , ...)
 - Electron Scattering (spread of energy in 3D)
 - Resist development
 - Transfer of energy to dissolution rate
 - Resist development process (single layer, multi layer)
 - Post development process (baking, descum,...)
 - Pattern transfer
 - Lift off
 - Etching (wet, RIE)
 - Inspection
 - SEM imaging

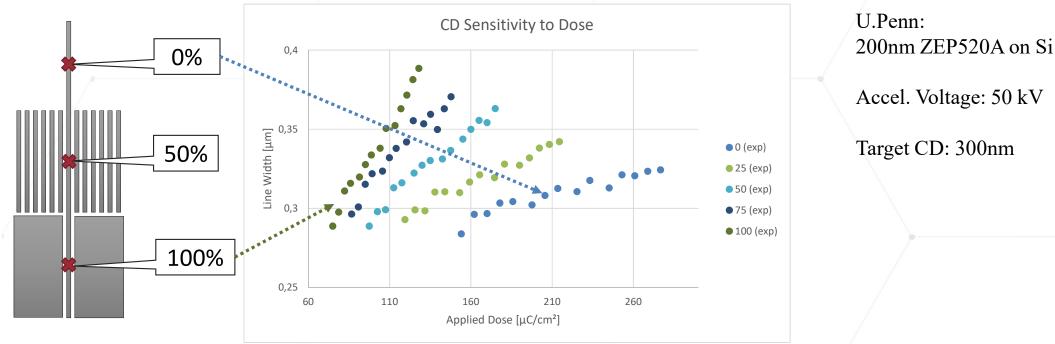




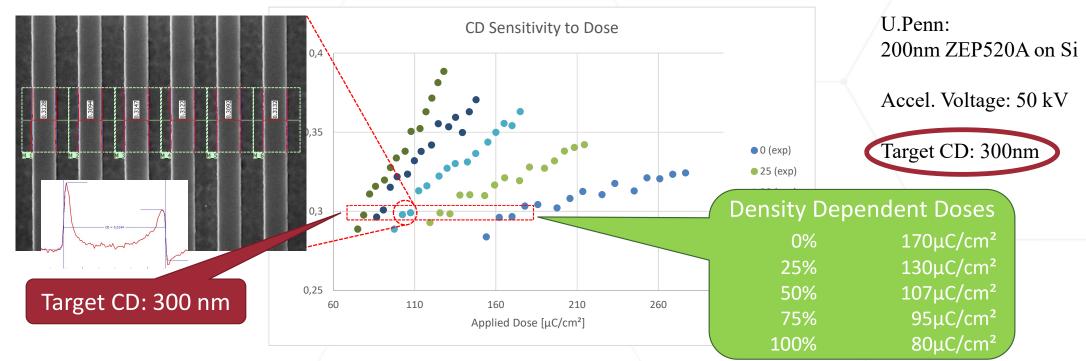
How do we Choose Exposure Parameters?

• Base Dose

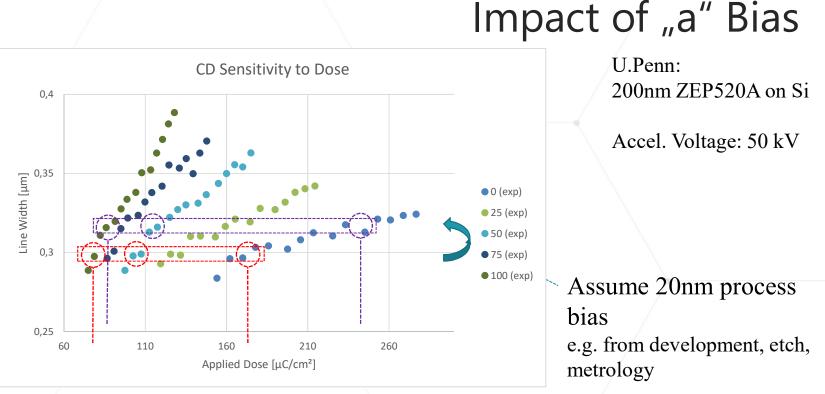
- Expose dose matrix
 - a "typical" PEC'ed pattern
 - large 50% L/S pattern with dose matix
- Process (develop, pattern transfer)
- Find "right dose" with SEM measurement



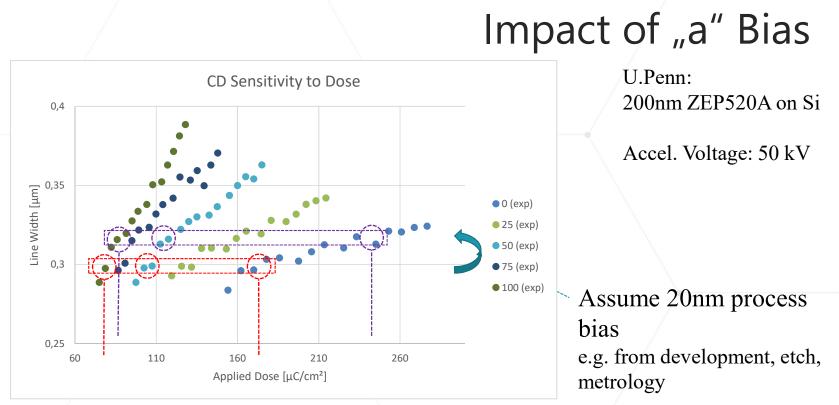
- Good as a starting point
- Does not include process effects across densities
- May not be the "best base dose"


Typical Experimental Result

- For a given stack, CD_{measured} is a function of dose and pattern density
 - Iso- and dense lines require very different doses to get to the same CD
 - Iso lines show "best" CD response with dose (big changes in dose -> CD varations)
- Base Dose and Bias is coupled



"Typical" Process Optimization: Dose to Size

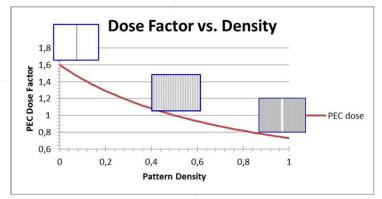

- Typical base dose calibration picks "line width == space width" for 1:1 L&S
 - Results in 107 $\mu\text{C/cm}^2$ Base Dose for this example
 - Results in Dose Range 80 (100%) .. 170 μC/cm² (0%)

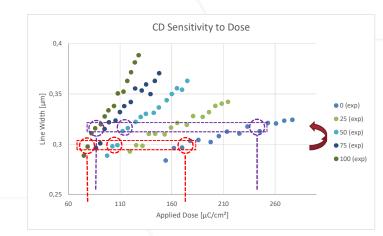
- Target CD (= Zero Bias) results in Dose Range 80 (100%) .. 170 μ C /cm² (0%)
- 20nm Bias \Rightarrow Applied dose: 91µC (100%) .. 233µC /cm² (0%)

- Target CD (= Zero Bias) results in Dose Range 80 (100%) .. 170 μ C /cm² (0%)
 - PEC would need to deliver a dose ratio D_{iso} / D_{dense} = 170 / 80 = 2.12
- 20nm Bias \Rightarrow Applied dose: 91µC (100%) .. 233µC /cm² (0%)
 - PEC would need to deliver a dose ratio $D_{iso} / D_{dense} = 233 / 91 = 2.56$

• PEC computes (density dependent) dose factors

- The dose ratio D_{iso} / D_{dense} only depends on backscattering (NOT on process point)
- For Si at 50keV, $D_{iso} / D_{dense} = 2.4$


$$D_{f} = \frac{1}{1 + BE(2\rho - 1)}$$

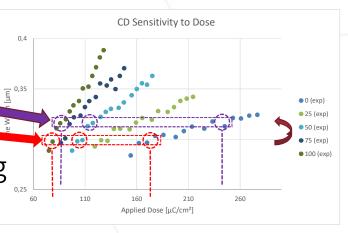

$$BE = 0.4$$

$$\rho = 1 \text{ for dens} / 0 \text{ isolated}$$

$$\frac{D_{iso}}{D_{dense}} = \frac{\frac{1}{1 + 0.412(2 * 0 - 1)}}{\frac{1}{1 + 0.412(2 * 1 - 1)}} = 2.4$$

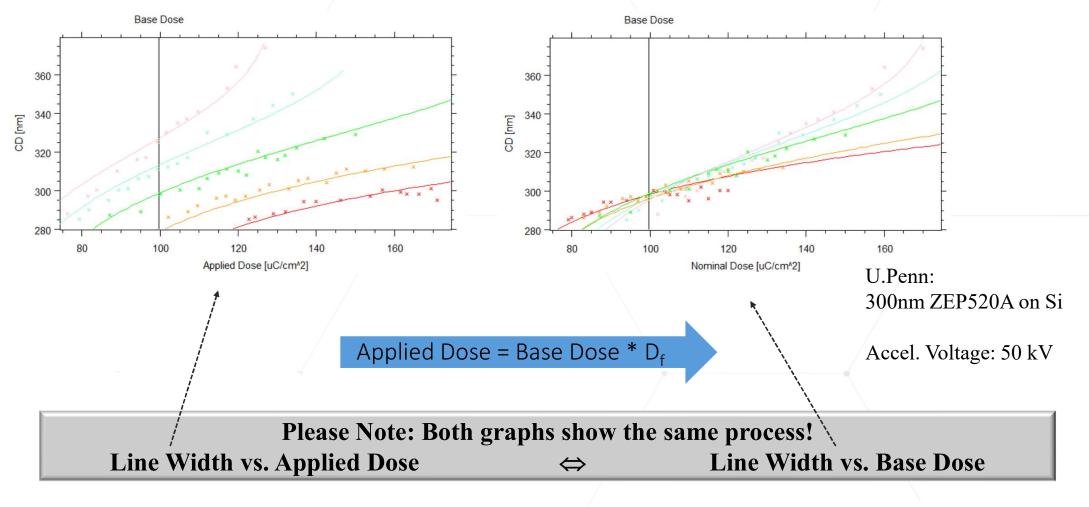
Key Learning





- PEC computes (density dependent) dose factors
 - The dose ratio D_{iso} / D_{dense} only depends on backscattering (NOT on process point)
 - For Si at 50keV, $D_{iso} / D_{dense} = 2.4$
- However, process data shows varying dose ratios
 - For the sample data shown
 - $D_{iso} / D_{dense} = 2.56$ (20nm bias)
 - $D_{iso} / D_{dense} = 2.12 (0 bias)$
- Adjustment to proper dose range enable decoupling
 - Base Dose, Process Bias (global & density dependent), effective blur

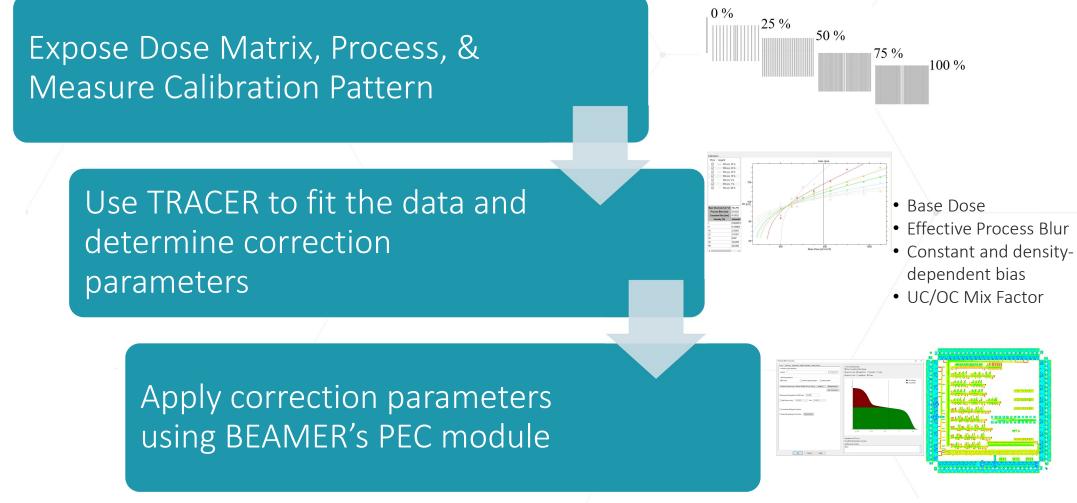
Process point with smallest spot-size (blur) sensitivity: the iso-focal


Key Learning

Iso-Focal Calibration

References

- 1. Chris Mack, Electron-beam lithography simulation for maskmaking, part IV, proceedings of Photomask and X-Ray Mask Technology VI, SPIE Vol. 3748, pp. 27-40
- K.Keil et al, Determination of best focus and optimum dose for variable shaped e-beam systems by applying the isofocal dose method, Microelectronic Engineering 85 (2008) 778– 781
- 3. U.Hofmann, N.Ünal, S.Sayan, G.Lopez, D.Mahalu, A novel method to find the best (isofocal) process point in electron beam lithography, GenISys White Paper
- 4. G. Lopez et al, Isofocal Dose Based Proximity Effect Correction Tolerance to the Effective Process Blur. Journal of Vacuum Science & Technology B 35, 06G505, 2017
- 5. Application Note in GenISys download area, Full Process Calibration using TRACER: Experimental Procedure

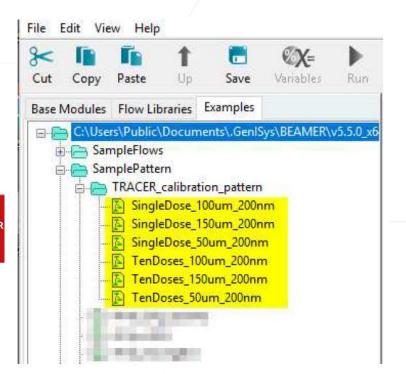


- Part 3 Summary: Dose PEC Parameter
- Process Effects and Major Parameter
- Calibration procedure
 - GaAs example
 - High contrast resist vs. low contrast resist
- Advanced Model Parameter
- Summary
- Q&A

Process Calibration Procedure

Documentation and Materials

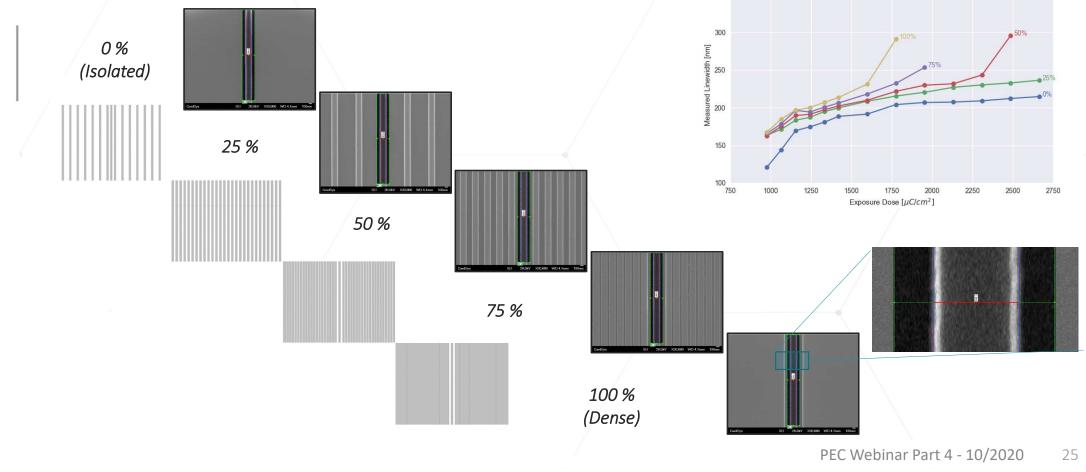
- Calibration patterns are in BEAMER example folder
- Application Note in download area
- Help: support@genisys-gmbh.com



Application Note

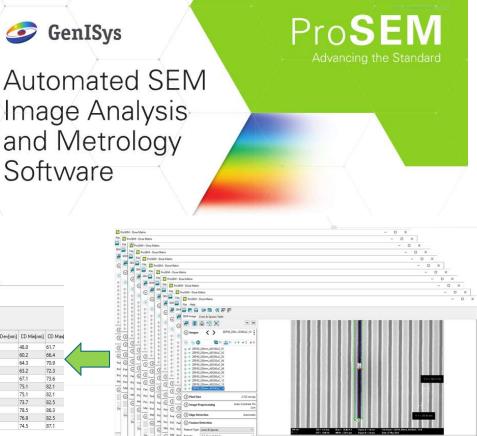
TRACER

Full Process Calibration using TRACER: Experimental Procedure


An optimized e-beam lithography data preparation process must take into account process effects beyond just the electron energy distribution point spread function (PSF) as computed by TRACER. These process effects include density-dependent development rate changes, resist lateral development, and size bias due to process or metrology. It is possible to characterize and subsequently correct for these effects using a set of empirical measurements. This note describes the experimental procedure and data analysis necessary for such a Full Process Calibration.

Measuring Process Effects of Pattern Density

• Expose lines over a range of doses, with local pattern density varying from isolated to fully dense.

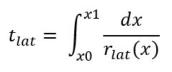


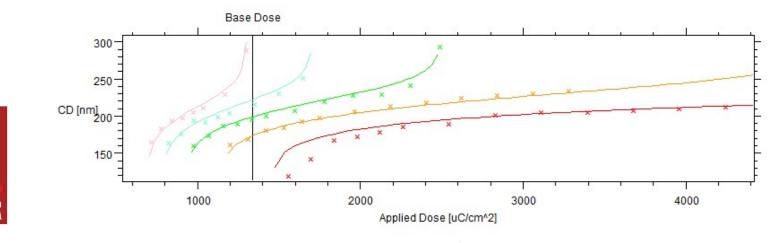
Fast and Consistent Measurements

• Consistent and reliable SEM measurements are critical for process calibration

- Hand-drawn cursors are subjective, tedious, time-consuming, inconsistent
- ProSEM offers stable, consistent, fast CD measurements from saved SEM images
- Recipes, Batch Processing and Scripting enable automation

	X 🖬 5						
SEM Image Lines & Space							
Image	Validation	Measurement ID	Dose	CD Mean(nm)	CD StdDev[nm]	CD Min[nm]	CD Max
ZEP50_200nm_AD160uC_01	Validated	M_1	160.0	54.6	2.2	48.0	61.7
ZEP50_200nm_AD180uC_02	Success	M_1	180.0	63.4	1.1	60.2	66.4
ZEP50_200nm_AD200uC_03	Success	M_1	200.0	67.8	1.1	64.3	70.9
ZEP50_200nm_AD220uC_04	Success	M_1	220.0	68.5	1.2	63.2	72.3
ZEP50_200nm_AD240uC_06	Success	M_1	240.0	70.2	1.2	67.1	73.6
ZEP50_200nm_AD260uC_08	Success	M_1	260.0	77.9	1.1	75.1	82.1
ZEP50_200nm_AD260uC_09	Success	M_1	260.0	77.9	1.1	75.1	82.1
ZEP50_200nm_AD280uC_11	Success	M_1	280.0	78.2	1.8	73.7	82.5
ZEP50_200nm_AD300uC_12	Validated	M_1	300.0	81.6	1.4	78.5	86.3
ZEP50_200nm_AD320uC_13	Success	M_1	320.0	79.8	1.0	76.9	82.5
ZEP50 200nm AD340uC 14	Success	M1	340.0	80.9	2.5	74.5	87.1

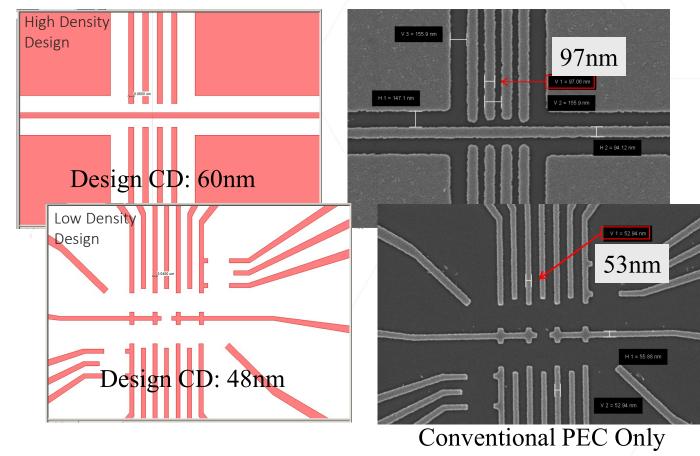



Fitting the Measured CD Data

• The data is fitted to determine additional correction terms needed to compensate for process effects

$$CD = CD_0 + Bias_{Lat.Dev} + \frac{ProcessBlur}{\sqrt{\ln(2)}} * Erf^{-1}\left[\left(\frac{D2C}{D} - BE - Dens_{long-range} * BE\right) * (1 - BE)\right]$$

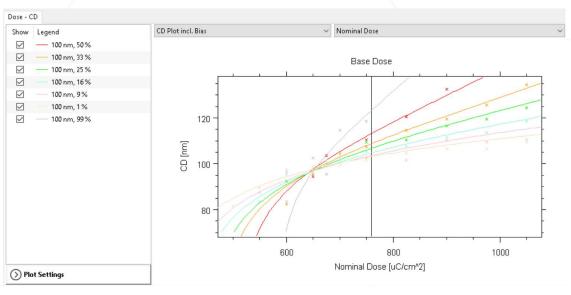
Where the *Bias_{Lat.Dev}* is determined using the development rates derived from the contrast curve and iterating the integral:


Calibration										×
ase Dose, Blu	ur and Bias	. (Overdose:	1.	00 🗘 CD Plo	ot incl. Bias 🗸	Nominal Dose		~	
 ✓ 200 ✓ 200 ✓ 200 ✓ 200 	0 nm, 0 % 0 nm, 25 % 0 nm, 50 % 0 nm, 75 % 0 nm, 100 %	300 - 250 - D [nm] 200 - 150 -			Dose	· ·				
		tional Mid Ra Range Weight	1000 nge [nm]: 3722 :: 0.387		1500 CD(D) F	Nominal RMS Error [nm]:	2000 Dose [uC/cm^2] 7.36351)	2500	
ta Equivalent: ase Dose [uC/cm rocess Blur [nm]:	0.600 Mid F	Range Weight 133 3	nge [nm]: 3722 :: 0.387 9.17 - Opti	imize ~			Dose [uC/cm^2])	2500	
a Equivalent: ase Dose [uC/cm rocess Blur [nm]:	0.600 Mid F	Range Weight 133 3	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti	imize ~		RMS Error [nm]:	Dose [uC/cm^2])	2500	^
a Equivalent: ase Dose [uC/cm rocess Blur [nm]:	0.600 Mid F	Range Weight 133 3	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixed	imize ~ imize ~ d ~	CD(D) F	RMS Error (nm): Refit	Dose [uC/cm^2])	2500	^
a Equivalent: ase Dose (uC/cm rocess Blur [nm]: onstant Bias [nm] 8 133 9 144	0,600 Mid F	Range Weight 133 3 - B	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixed C	r imize v d v D	CD(D) F 200.6 206.2	RMS Error (nm): Refit F	Dose [uC/cm^2])	2500	^
a Equivalent: ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 13: 9 14: 10 155	0,600 Mid F (*2):): A 32 20.8 98.4	Range Weight 133 3 - - - - - - - - - - - - - - - - -	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixed 194.8 199.7 208.5	7 imize ~ d ~ 197.2 202.2 209.9	CD(D) F 200.6 206.2 218.1	RMS Error [nm]: Refit 207 213.5 231.4	Dose [uC/cm^2])	2500	^
ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 133 9 141 10 155 11 177	0.600 Mid F (*2): J: A 32 20.8 99.4 76	tange Weight 133 3 - - - - - - - - - - - - - - - - -	nge [nm]: 3722 :: 0.387 9.17 ÷ Opti 5.71 ÷ Opti 3.06 ÷ Fixe 194.8 199.7 208.5 215.4	7 imize ~ d ~ 197.2 202.2 209.9 221.7	CD(D) F CD(D) F E 200.6 206.2 218.1 232.3	RMS Error (nm): Refit 207 213.5 231.4 290.9	Dose [uC/cm^2])	2500	~
a Equivalent: ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 13: 9 14: 10 156 11 177 12 19:	0,600 Mid F ^2]:]: 32 20.8 98.4 76 53.6	tange Weight 133 3 B 180.7 188.4 191.5 204.1 206.9	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixen 194.8 199.7 208.5 215.4 220.4	7 imize ~ d ~ 197.2 202.2 209.9 221.7 229.8	CD(D) F CD(D) F 200.6 206.2 218.1 232.3 253.4	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0	Dose [uC/cm^2])	2500	
a Equivalent: ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 133 9 144 10 155 11 177 12 195 13 213	0,600 Mid F (*2):): A 32 20.8 98.4 76 53.6 31.2	tange Weight 133 3 8 180.7 188.4 191.5 204.1 206.9 207.4	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixed 194.8 199.7 205.5 215.4 220.4 227	7 imize d 197.2 202.2 209.9 221.7 229.8 231.7	CD(D) F E 200.6 206.2 218.1 232.3 253.4 0	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0	Dose [uC/cm^2]		2500	
a Equivalent: ase Dose [uC/cm cocess Blur [nm]: onstant Bias [nm] 8 133 9 144 10 159 11 177 12 199 13 211 14 230	0,600 Mid F ^2]:	tange Weight 133 3 - - - - - - - - - - - - -	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixed 194.8 199.7 208.5 215.4 2204 2204 2204 2204 2204	7 imize ~ d ~ 197.2 202.2 209.9 221.7 229.8 231.7 243.4	CD(D) F CD(D) F 200.6 206.2 218.1 232.3 253.4 0 0 0	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0	Dose [uC/cm^2]		2500	^
ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 13: 9 14; 10 156 11 17; 12 19; 13 21; 14 23; 15 24;	0,600 Mid F (*2):): A 32 20.8 98.4 76 53.6 31.2 08.8 86.4	tange Weight 133 3 - - - - - - - - - - - - -	nge [nm]: 3722 : 0,387 9.17	7 imize ~ imize ~ d ~ 197.2 202.2 209.9 221.7 229.8 231.7 243.4 295.7	CD(D) F CD(D) F 200.6 206.2 218.1 232.3 253.4 0 0 0 0	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0	Dose [uC/cm^2]		2500	^
a Equivalent: ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 13: 9 14: 10 156 11 177 12 19: 13 21: 14 230 15 24: 16 266	0,600 Mid F (*2):): A 32 20.8 98.4 76 53.6 31.2 08.8 86.4	8 133 133 3 180.7 188.4 191.5 204.1 204.2 2	nge [nm]: 3722 :: 0.387 9.17 Opti 5.71 Opti 3.06 Fixed Fixed 194.8 199.7 208.5 215.4 220.4 227 230.2 232.8 236.4	7 imize imize d D 197.2 202.2 209.9 221.7 229.8 231.7 243.4 295.7 0	CD(D) F CD(D) F 200.6 206.2 218.1 232.3 253.4 0 0 0 0 0 0	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]		2500	
ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 133 9 144 10 155 11 177 12 199 13 213 14 234 15 244 16 244 16 244 16 244	0,600 Mid F (*2): 	tange Weight 133 3 B 180.7 188.4 191.5 204.1 206.9 207.4 205.9 207.4 207.4 205.9 207.4 207.4 205.9 207.4 205.9 207.4 207.4 205.9 207.4	nge [nm]: 3722 :: 0.387 9.17 • Opti 5.71 • Opti 3.06 • Fixed 194.8 199.7 208.5 215.4 220.4 227 230.2 232.8 223.4 0	7 imize imize d D 197.2 202.2 209.9 221.7 229.8 231.7 243.4 295.7 0 0	CD(D) F CD(D) F 200.6 206.2 218.1 232.3 253.4 0 0 0 0 0 0 0 0 0	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]		2500	
ase Dose [uC/cm rocess Blur [nm]: onstant Bias [nm] 8 133 9 144 10 155 11 177 12 199 13 211 14 230 15 244 16 260 17 0 0 18 CC	0,600 Mid F (*2):	tange Weight 133 3 B 180.7 188.4 191.5 204.1 206.9 207.4 209.1 212.2 214.7 0 11.9498	nge [nm]: 3722 :: 0.387 9.17	7 imize imize d D 197.2 202.2 209.9 221.7 229.8 231.7 243.4 295.7 0 0 0 4.15258	CD(D) F CD(D)	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]		2500	^
ta Equivalent: ase Dose [uC/cm rocess Blur [nm]; onstant Bias [nm] 8 13: 9 14; 10 159 11 17; 12 199 13 21; 14 23; 15 24; 16 26; 17 0 18 0 0 18 0	0,600 Mid F ^2]:	B 133 3 - - - - - - - - - - - - - - - - -	nge [nm]: 3722 : 0,387 9.17	7 imize ~ imize ~ d ~ 197.2 202.2 209.9 221.7 209.9 221.7 229.8 231.7 243.4 295.7 0 0 4.15258 50.000	CD(D) F CD(D)	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]		2500	^
9 14, 10 159 11 17, 12 19 13 21: 14 23: 15 244 16 260 17 0 18 CL 19 19	0,600 Mid F (*2):	tange Weight 133 3 B 180.7 188.4 191.5 204.1 206.9 207.4 209.1 212.2 214.7 0 11.9498	nge [nm]: 3722 :: 0.387 9.17	7 imize imize d D 197.2 202.2 209.9 221.7 229.8 231.7 243.4 295.7 0 0 0 4.15258	CD(D) F CD(D)	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]		2500	~

Fit Results

- The fitting procedure results in an "Extended Point Spread Function", adding terms to the scattering PSF for:
 - Optimal Base Exposure Dose
 - Process Blur
 - Overall Process Bias
 - Density-dependent Bias to compensate for lateral development
 - Midrange Gaussian term for additional process effects, such as diffusion
 - OC/UC Mix Factor

Quantum Device w/o Process Calibration

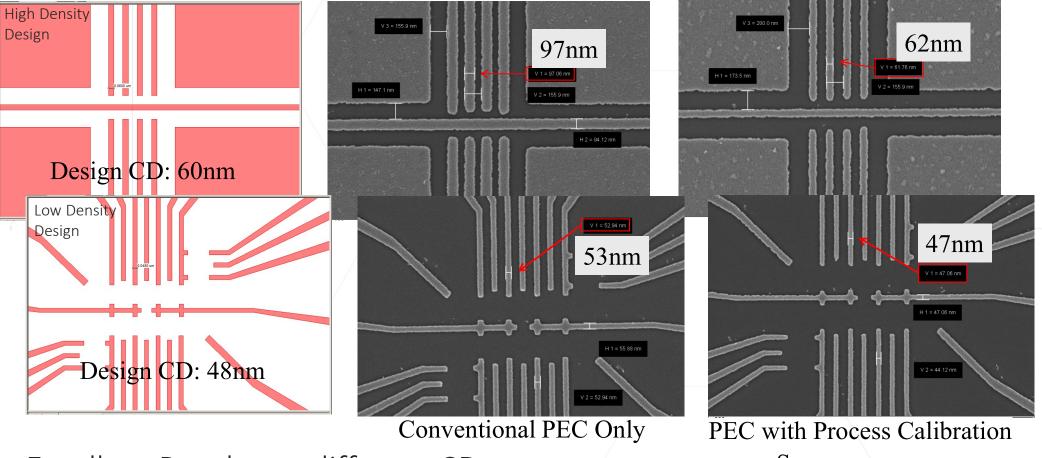

• The 48 nm line almost on target – 60nm line far away from target

• Calibration of Process Data resulted in

- Base Dose = 795 μ C/cm²
- Process Blur = 26nm
- $Bias_{0\%} = 4nm$; $Bias_{25\%} = 9nm$; $Bias_{50\%} = 18nm$; $Bias_{99\%} = 32nm$

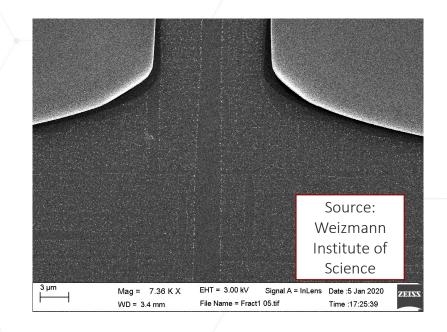
Calibration for 100keV on GaAs

12ºC (tool set point) development 2 minutes										
Dose factor	Pattern Ratio	1:1	1:2	1:3	1:5	1:10	1:1000	100:1		
1050 μC/cm	2		135.6	125.9	119.1	111.3	110.8			
975 μC/cm²			126.2	120.6	114	110.8	107.4			
900 μC/cm²		132.9	120.9	117.6	112.1	111.8	107.9			
825 μC/cm²		121.6	115.5	111.5	108.5	102.5	105			
795 μC/cm²		118	112	110	106	105	104	132		
750 μC/cm²		111.5	108.2	110	105.6	102.9	102.5	118.7		
700 μC/cm²		104.7	104.7	104.1	102	103.7	100.4	115.1		
675 μC/cm²		104.1	100.9	100.3	102.2	100	101	95.6		
650 μC/cm²		95	95.7	99.1	103.4	97.8	98.9	103.7		
600 μC/cm²		81.6	89.7	93	95.6	94.1	98.1			
550 μC/cm²					83.8	88.2	90.4			
500 μC/cm²							82.5			


Process:

200nm PMMA on GaAs Exposure @ 100 kV Development: 2 minutes at 12^oC (tool set point)

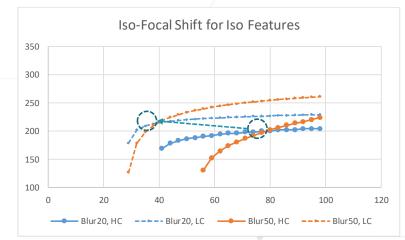
Quantum Device Result


• Excellent Results on different CDs at different densities

Source: פכוז ויצמו למדע שכוז ויצמו למדע Weizmann Institute of science

Resist Residues

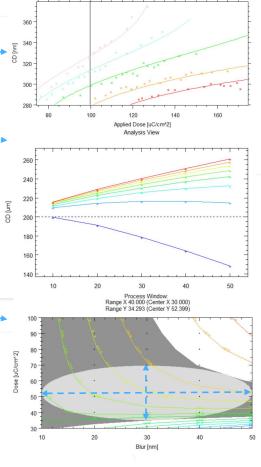
- In some cases, resist residues are left in large exposed areas
- This is especially found with:
 - Low contrast resists
 - On Higher Z materials, such as III-V semiconductor substrates

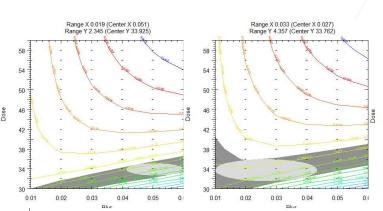

- Part 3 Summary: Dose PEC Parameter
- Process Effects and Major Parameter
- Calibration procedure
- Advanced Model Parameters
 - Low-contrast resists in combination with III-V materials
 - HSQ peculiarities
- Summary
- Q&A

Lateral Development \Rightarrow Iso-Focal Shift

• Low-contrast resists develop also at lower doses

- Iso: development into the blur (e.g. spot size)
 - Si example: 80μC -> 40μC, 12nm Bias
- Dense: development into the blur and backscatter
 - Si example: 80μC -> 50μC, 25nm Bias
- Net effect: the process iso-focal shifts to lower doses
 - Stronger with more back-scattering (III-V materials)
 - Stronger with lower contrast resists (e.g. PMMA)
 - Stronger for thicker resist
- Key Learnings
 - For III-V on GaAs, this can shift the iso-focal below D2C
 - Since the amount of shift is density dependent, it will change the required PEC dose range




Blur-Dose Matrix

- Different ways to plot CD / Dose / Density / Blur Dependency
 - CD as function of Dose, with Density Iso-Lines ----
 - CD as function of Blur, with Dose Iso-Lines
 - Individual plots for the different densities
 - Already gives an indication of "iso-focal" dose (horizontal trend)
 - Dose as a function of Blur, with CD iso-Lines
 - ± 5% CD tolerance from target provides CD limits (gray area)
 - Fit elliptical Process Window into CD limits
 - Horizontal axis is "blur latitude"
 - Vertical axis is "dose latitude"

35

Range X 0.050 (Center X 0.035) Range Y 7.077 (Center Y 38.311)

58

54

50

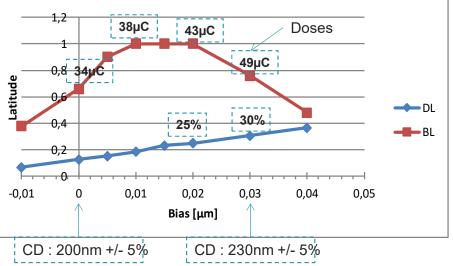
46

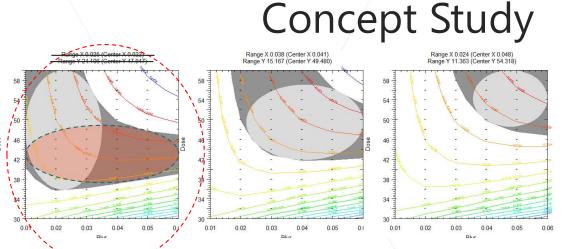
42

38

34

0.01

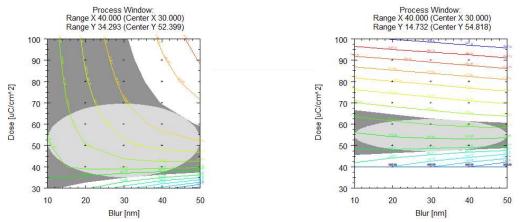

0.02


0.03

DI.

0.04

0.05

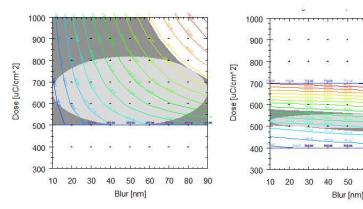


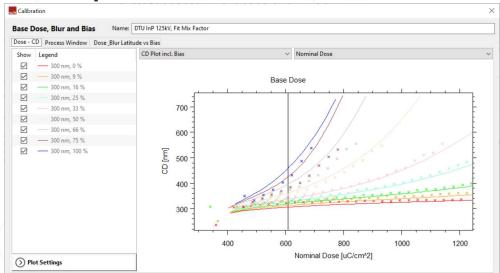
- Iso-Line, Si, Low-contrast Resist
- "Best" Process Point @ ~20nm Bias
 - "Largest" Process Window
 - Smallest Bias Value
 - Base Dose = 40µC

Process Iso-Focal

- For each density, search a large enough "blur latitude"
 - This guarantees good CD control also at the corners of the field
 - In the high-contrast case, this is equivalent to the optical iso-focal
 - TRACER searches for a large enough blur latitude (up to 2.5*ProcessBlur)
 - Under constraints (BaseDose * PEC_Dose_{100%} > D2C, small Bias values)

- Please Note: blur cross-over (= iso-focal) and density cross-over are different points
 - Therefore, a density dependent Bias becomes essential




Low Contrast InP Example, Process Iso-Focal

- Customer Case
 - InP, 125kV, PMMA (γ=3)
 - D2C known as 480μ C/cm²
- \bullet Process Iso-focal at 609 $\mu C/cm^2$
 - Mix-Factor at 25/75
 - Above D2C (609*0.88 = 538µC/cm²)

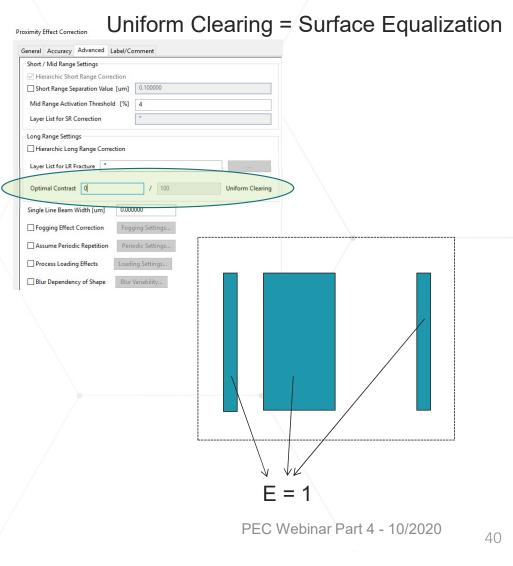
80

50 60 70

Base <u>d</u> ose [uC/cm^2]:	608.71	Optimize \lor		Cov. [%]	Lateral Bias [nm]	Applied Bias [nm]	Blur Latitude [%]	Dose Latitude [
Process bl <u>u</u> r [nm]:	45 🗘	Optimize 🗸		1	-0	6	91	
onstant bias [nm]:	6	Fixed ~		9	6	13	79	
		TINCO		16	13	19	100	
Optimal contrast [%] / Uniform clearing [%]	25 + 75 +		Refit	25	22	28	97	
Overdose:	1.00			33	31	37	91	
				50	56	62	81	
Fit RMS deviation [nm]:	18.66			66	90	96	95	
				75	119	125	100	
				97	152	159	100	

Low Contrast InP Validation

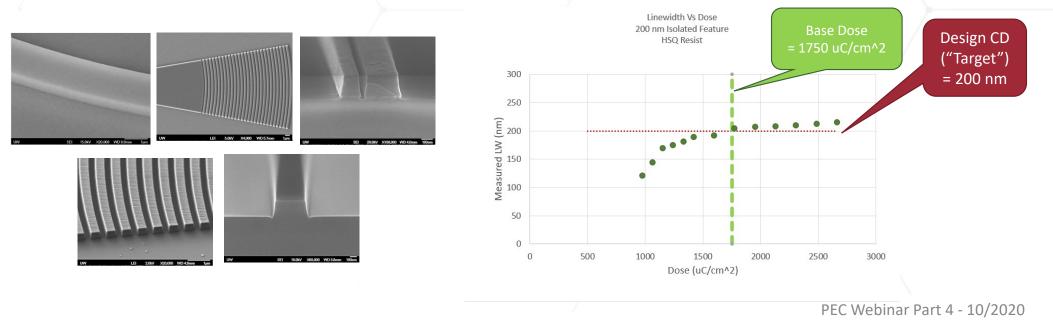
InP,125kV/ Basedose: 572.0 μC/cm²


- \bullet Customer measured 572 $\mu\text{C/cm}^2$
 - Mix-factor of 41/59
- \bullet Pretty close to model prediction at 609 $\mu\text{C/cm}^2$
 - Mix-Factor of 25/75
- Not bad for just one dataset with one spot-size
 - Measuring process iso-focal requires at least two data sets with different spot sizes
 - TRACER criteria optimizes for "large enough" blur latitude

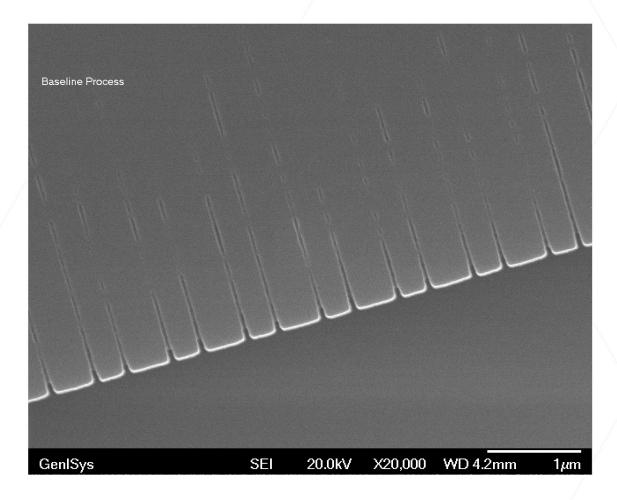
General Accuracy Advanced Label/Co	mment Quick Access	
Short / Mid Range Settings		
Hierarchic Short Range Correction	0.100000	
Short Range Separation Value [um]		
Mid Range Activation Threshold [%]	2.000000	
Layer List for SR Correction		
Long Range Settings		
Hierarchic Long Range Correction		
Layer List for LR Fracture		
Optimal Contrast 25	/ 75 Uniform Clearin	g
Assume Periodic Repetition Perio	000 ing Settings dic Settings	
Blur Dependency of Shape Blur	ariability	

Automatically transferred via extended PSF

PEC – Mix Factor

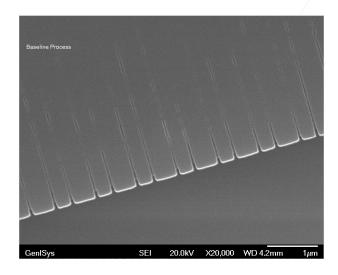

- Part 3 Summary: Dose PEC Parameter
- Process Effects and Major Parameter
- Calibration procedure
- Advanced Model Parameters
 - Low-contrast resists in combination with III-V materials
 - HSQ peculiarities
- Summary
- Q&A

HSQ Silicon Photonics

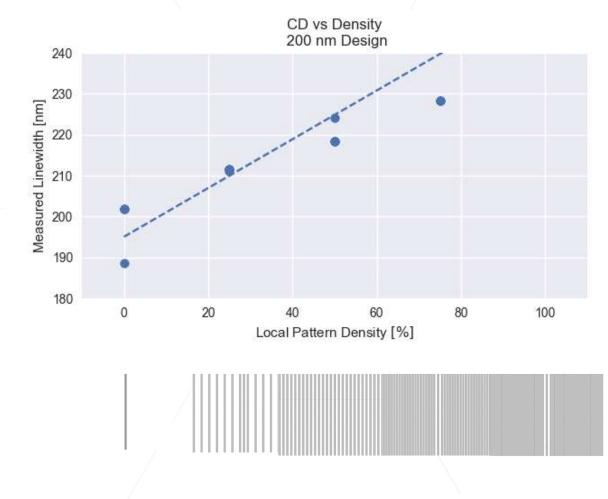

42

- An HSQ process for Silicon Photonics has been in use for 9+ years.
- The process point was determined in a "traditional" way.
 - Use a baseline PSF for 100 kV electrons on Si.
 - Expose a dose matrix of the patterns, which were low-density waveguides (0-25%)
 - Choose base dose by observation, what dose gives proper size for a waveguide
- Hundreds of successful wafers have been built with this process.

... until they needed higher-density patterns

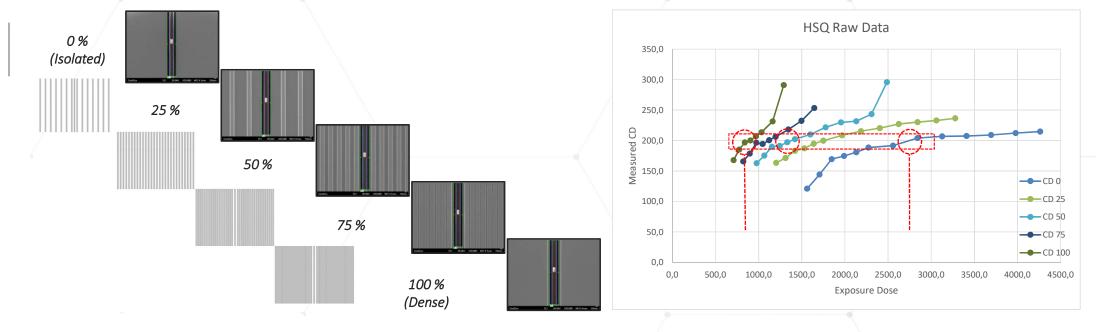

"Giant" subwavelength surface grating coupler.

Local density in the middle ~ 82%



• Strong dependence of linewidth on pattern density, even using baseline proximity effect correction.

• Dense patterns with small spaces are impossible.


CD versus Local Pattern Density

PEC Webinar Part 4 - 10/2020 44

Advancing the Standard Measuring Effect of Pattern Density Expose lines over a range of doses, with local pattern density varying from isolated to fully dense.

Indicator: dose ratio D_{iso} / D_{dense} highly unusual: 2800 / 850 = 3.3 (expected would be 2.2) → something in addition to scattering effects

What is 'special' about HSQ?

- Many researchers have reported exposure effects such as neighboringshape interactions beyond electron scattering, non-reciprocity(writing order) effects, or have observed the utility of adding an additional midrange Gaussian energy term to the dose-based PEC to improve results.
- Examples include: Liddle (2003), Olynick (2006), Brown (2013)
- Olynick 2006 speculates these are due to diffusion of hydrogen released during the exposure, which increases the HSQ sensitivity (lower the dose) of nearby shapes.
- However, no known published description of systematically quantifying and correcting for these effects.

J. Alexander Liddle,⁴⁾ Farhad Salmassi, Patrick P. Naulleau, and Eric M. Gullikson Center for X-Ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720

(Received 9 July 2003; accepted 8 September 2003; published 10 December 2003)

Scanning x-ray microscopy investigations into the electron-beam exposure mechanism of hydrogen silsesquioxane resists

Deirdre L. Olynick⁸ and J. Alexander Liddle^{b)} Lawrence Rerkeley National Laboratory, Molecular Foundry, Mail Stop 67-2206, One Cyclotron Rd., Berkeley, California 94720

Alexei V. Tivanski and Mary K. Gilles Lawrence Berkeley National Laboratory. Chemical Sciences Division, Mail Stop 6-2100, One Cyclotron Rd, Berkeley, California 94720

Tolek Tyliszczak Lawrence Berkeley National Laboratory, Advanced Light Source, Mail Stop, One Cyclotron Rd., Berkeley, California 94720

Farhad Salmassi Lawrence Berkeley National Laboratory, Center for X-ray Optics, Mail Stop 2-400, One Cyclotron Rd., Berkeley, California 94720

Kathy Liang and Stephen R. Leone Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720; Department of Chemistry, University of California, Berkeley, California 94720; and Department of Physics, University of California, Berkeley, California 94720

(Received 29 August 2006; accepted 18 October 2006; published 30 November 2006)

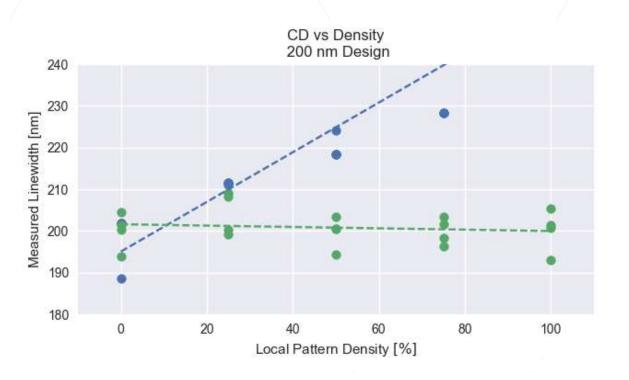
Pattern exposure order dependence in hydrogen silsesquioxane Devin K. Brown, Institute for Electronics and Nanotechnology, Georgia Institute of Technology devin.brown@ien.gatech.edu

Hydrogen diffusion can be modeled by additional mid-range Gaussian

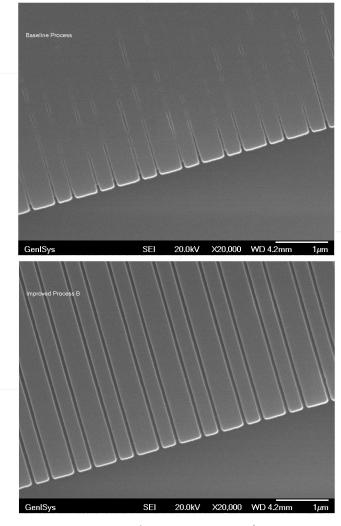
Calibration											
Base Dose, B	Blur and Bias	(Overdose:	1.	.00 🗘 CD Plo	ot incl. Bias 🗸 🗸	Nominal Dose		~		
✓ — 2	nd 200 nm, 0 % 200 nm, 25 % 200 nm, 50 %	300-		Base	Dose	r 9	• • •	 1	· · · · ·		
	00 nm, 75 %	250									1
✓ — 2	00 nm, 100 %	-				- F	XX	*	× ×	-	Ē
	CI	D [nm] 200		-		XX X	* *				E.
		150	-	×							- - -
		7	1000	1 6 1	1500	е и П	2000	a a	250	10	<u>e - '</u>
a Equivalent:	0.600 Mid R	ional Mid Rai Range Weight	: 0.	387	CD(D)		Dose [uC/cm^2]				
a Equivalent: ase Dose [uC/ci	0.600 Mid R	Range Weight 133	:: 0. 9.17 ; C		CD(D)	Nominal I	Dose [uC/cm^2]				
a Equivalent: ase Dose [uC/ci rocess Blur [nm	0.600 Mid R	Range Weight 133 3	: 0. 9.17 - C 5.71 - C	387 Optimize V	CD(D)	Nominal I	Dose [uC/cm^2]				
a Equivalent: ise Dose [uC/ci ocess Blur [nm	0.600 Mid R	Range Weight 133 3	: 0. 9.17 - C 5.71 - C	387 Dptimize ∨ Dptimize ∨	CD(D)	Nominal I RMS Error [nm]:	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/cr rocess Blur [nm onstant Bias [ni	0.600 Mid R m^2]:	Range Weight 133 3 -	:: 0. 9.17 ↓ C 5.71 ↓ C 3.06 ↓ F	387 Dptimize ~ Dptimize ~		Nominal I RMS Error [nm]: 1	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/ci rocess Blur [nm onstant Bias [ni ase 1 9 1	0.600 Mid R m^2]: ŋ]: m]: A 1332 1420.8	Range Weight 133: 3: 	± 0. 9.17 ★ C 5.71 ★ C 3.06 ★ F 194.8 199.7	337)ptimize ~ ixed ~ 197.2 202.2	E 200.6 206.2	Nominal I RMS Error [nm]: : Refit 207 213.5	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/cr rocess Blur [nm onstant Bias [ni onstant Bias] 1 9 1 10 1	0.600 Mid R m^2]: n]: m]: 1332 1420.8 1598.4	Lange Weight 1333 3 	:: 0. 9.17 ↓ C 5.71 ↓ C 3.06 ↓ F 194.8 199.7 208.5	387)ptimize ~ ixed ~ 197.2 202.2 209.9	E 200.6 206.2 218.1	RMS Error [nm]: Refit 207 213.5 231.4	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/co rocess Blur [nm onstant Bias [ni onstant Bias] 10 10 11	0.600 Mid R m^2]: m]: M]: 1332 1420.8 1598.4 1776	Range Weight 133 3 	± 0. 9.17	337) ptimize ixed 197.2 202.2 209.9 221.7	E 200.6 206.2 218.1 232.3	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/cr rocess Blur [nm onstant Bias [ni onstant Bias] 8 1 9 1 10 1 11 1 12 1	0.600 Mid R m^2]: n]: m]: 1332 1420.8 1598.4 1598.4 1776 1953.6	Range Weight 133 3 - - - - - - - - - - - - -	E 0. 9.17 ♥ C 5.71 ♥ C 3.06 ♥ F 194.8 199.7 208.5 215.4 220.4	387)ptimize ixed 197.2 209.9 221.7 229.8	E 200.6 206.2 218.1 232.3 253.4	Nominal I RMS Error [nm]: : Refit 207 213.5 231.4 290.9 0	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/cr rocess Blur [nm onstant Bias [nr onstant Bias] 10 1 11 1 12 1 13 2	0.600 Mid R m^2]: n]: m]: 1332 1420.8 1598.4 1598.4 1776 1953.6 2131.2	B 133 3 	:: 0. 9.17 ♥ C 5.71 ♥ C 5.71 ♥ C 194.8 199.7 208.5 215.4 220.4 2227	387)ptimize ixed 197.2 202.2 209.9 221.7 229.8 231.7	E 200.6 206.2 218.1 232.3 253.4 0	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/cr rocess Blur [nm onstant Bias [nr 8 1 9 1 10 1 11 1 12 1 13 2 14 2	0.600 Mid R m^2]: n]: m]: 1332 1420.8 1598.4 1598.4 1598.4 1776 1953.6 2131.2 2308.8	B 133 3 	± 0. 9.17	387)ptimize ixed 197.2 209.9 221.7 229.8 231.7 243.4	E 200.6 206.2 218.1 232.3 253.4 0 0	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0	Dose [uC/cm^2]				^
a Equivalent: ase Dose [uC/co rocess Blur [nm onstant Bias [ni 8 1 9 1 10 1 11 1 12 1 13 2 14 2 15 2	0.600 Mid R m^2]: m]: m]: 1332 1420.8 1598.4 1776 1953.6 2131.2 2308.8 2486.4	B 133 3 	± 0. 9.17 ★ C 5.71 ★ C 5.71 ★ C 3.06 ★ F 194.8 199.7 208.5 215.4 220.4 220.4 230.2 232.8	387 yptimize yptimize ixed 197.2 202.2 209.9 221.7 229.8 231.7 229.8 231.7 243.4 295.7	E 200.6 206.2 218.1 232.3 233.4 0 0 0 0	RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0	Dose [uC/cm^2]				^
ase Dose [uC/cri rocess Blur [nm onstant Bias [ni 8 1 9 1 10 1 11 1 13 2 14 2 15 2 16 2	0.600 Mid R m^2]: m]: m]: 1332 1420.8 1598.4 1776 1953.6 2131.2 2308.8 2486.4 2266.4	Range Weight 133 3 3 180.7 188.4 191.5 204.1 205.9 207.4 205.9 207.4 209.1 212.2 212.2 214.7	 ■ 0. ■ 17 • ■ 0. ■ 17 • ■ 0. ■ 0.	387)ptimize ∨)ptimize ∨ ixed ∨ 197.2 202.9 221.7 229.8 231.7 243.4 29.57 0	E 200.6 206.2 218.1 232.3 253.4 0 0 0 0 0 0 0	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]				^
ase Dose [uC/cr rocess Blur [nm onstant Bias [nr 8 1 9 1 10 1 12 1 13 2 14 2 16 2 17 0	0.600 Mid R m^2]: n]: m]: 1332 1420.8 1598.4 1598.4 1598.4 1953.6 2131.2 2308.8 2486.4 22664 0	B 1333 3 3 B 180.7 188.4 191.5 204.1 206.9 207.4 206.9 207.4 209.1 212.2 214.7 0	E 0. 9.17 ♥ C 5.71 ♥ C 5.71 ♥ C 194.8 199.7 208.5 215.4 220.4 220.4 220.4 220.2 230.2 230.2 236.4 0	387)ptimize ptimize ixed 197.2 202.2 209.9 221.7 229.8 231.7 243.4 295.7 0 0	E 200.6 206.2 218.1 233.3 233.4 0 0 0 0 0 0 0 0 0	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]				^
ta Equivalent: ase Dose [uC/cr rocess Blur [nm onstant Bias [nr 9 1 10 1 11 1 12 1 13 2 14 2 15 2 16 2 17 0	0.600 Mid R m^2]: m]: m]: 1332 1420.8 1598.4 1776 1953.6 2131.2 2308.8 2486.4 2266.4	B 1333 3 3 B 180.7 188.4 191.5 204.1 206.9 207.4 206.9 207.4 209.1 212.2 214.7 0	 ■ 0. ■ 17 • ■ 0. ■ 17 • ■ 0. ■ 0.	387)ptimize ∨)ptimize ∨ ixed ∨ 197.2 202.9 221.7 229.8 231.7 243.4 29.57 0	E 200.6 206.2 218.1 232.3 253.4 0 0 0 0 0 0 0	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dose [uC/cm^2]				^
9 1 10 1 11 1 12 1 13 2 14 2 15 2 16 2 17 0 18	0.600 Mid R m^2]:	B 1333 3 3 180.7 188.4 191.5 204.1 206.9 207.4 209.1 212.2 214.7 0 11.9498	 ⇒ 0. <l< td=""><td>387)ptimize)ptimize ixed 197.2 209.9 221.7 229.8 231.7 243.4 295.7 0 0 4.15258</td><td>E 200.6 206.2 218.1 232.3 253.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0</td><td>Dose [uC/cm^2]</td><td></td><td></td><td></td><td>Ŷ</td></l<>	387)ptimize)ptimize ixed 197.2 209.9 221.7 229.8 231.7 243.4 295.7 0 0 4.15258	E 200.6 206.2 218.1 232.3 253.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nominal I RMS Error [nm]: Refit 207 213.5 231.4 290.9 0	Dose [uC/cm^2]				Ŷ

Fit Results

- The fitting procedure results in an "Extended Point Spread Function", adding terms to the scattering PSF
 - Additional Midrange Gaussian term to compensate for hydrogen diffusion effects
 - Overall Process Bias
 - Density-dependent Bias terms to compensate for lateral development
 - Optimal Base Exposure Dose
 - Process Blur term



Extended PSF Calibration


	Before Calibration Chosen by 'Traditional Method'	Calibration Parameters Determined by TRACER fit to Measured CD Data
Base Dose	1750 μC/cm²	1340 μC/cm ²
Process Blur	50 nm	36 nm
Process Bias	None	-3 nm
Density-dependent Bias	None	0% = 0 nm, 25% = 1 nm, 50% = 2 nm, 75% = 2 nm, 100% = 3 nm
PEC Parameters	Standard Si PSF	Additional Mid-range Gaussian γ= 3722* nm, v=0.38*

- With the enhanced correction:
 - Features are nominally the design size through the full range of density
 - Devices not previously successful with standard PEC correction are now fabricated successfully

Success

PEC Webinar Part 4 - 10/2020 49

HSQ Summary

- HSQ exposures show (among other challenges):
 - Significant additional proximity effect, where exposed shapes can be affected by prior exposure of nearby shapes, above what is explainable by electron scattering
 - The effective dose for exposure is lowered when nearby shapes have been exposed
 - This effect can be measured and compensated for using dose proximity-effect correction, by treating the neighborhood exposures as an additional mid-range proximity effect term
- Not discussed here, but still true:
 - This also causes a significant "write-order" effect, so the sequence in which nearby shapes are written affects the resulting dimension
 - This write-order effect can be mostly mitigated by using multi-pass writing strategy

- Part 3 Summary: Dose PEC Parameter
- Process Effects and Major Parameter
- Calibration procedure
- Advanced Model Parameters
- Summary
- Q&A

Summary

- "Real" processes have many effects beyond electron scattering
 - Process / metrology bias
 - Lateral development from finite resist contrast (density dependent)
 - Additional midrange process effects
- PEC Dose Range depends on
 - Resist contrast: consequence of the iso-focal shift (image iso-focal -> process iso-focal)
 - High-contrast requires $D_{iso}/D_{dense} = 1 + 2*BS/FS$, one PMMA required $D_{iso}/D_{dense} = 1 + 1.2*BS/FS$
 - Additional terms such as resist sensitivity changes (e.g. coming from catalytic reactions)
- TRACER can plot and fit the experimental data, providing the necessary process correction parameters
 - Maximizing the blur latitude to minimize process variation, e.g. across field
 - May include mix factor strategies, between Optimum Contrast and Uniform Clearing
 - Substrate and contrast dependent
 - Ability to adjust with parameters & see effects on process window, e.g. Undersize/Overdose
- BEAMER can be used to correct for not only the "Proximity Effect" but also these additional process effects

TRACER Model

Considers contrast curve	Calibration	/
	Data	
	Name: Description:	Preconditions for the TRACER Calibration include: 1. An analytic PSF or a PSF from the archive 2. A Dose vs. Density table obtained by exposing and evaluating a PEC corrected density varying pattern, obtainable from GenSys. 3. Resist contrast value.
• Supports OC / UC	PEC Parameter used to process the calibration pattern Use analytical PSF Beta [nm]: 3000 Eta: 0.600 Gamma [nm]: 300 Vuse PSF from archive 2D-PSF: Optimal contrast [%]: 100 I 0 Use PSF 100 Vuse PSF from archive	Archive
• Fit Additional mid-range term		200 😨 D0 [uC/cm^2]: 500.00 😨 From CC
• Fit "mix factor"	A B 1 Target CD [nm] 0 2 Density [%] 0.000 3 Dose [uC/cm^2] Mea. CD [nm] 4 0 0	Add Dose Add Dataset Remove Import Export
		< Back Next > Cancel
		PEC Webinar Part 4 - 10/2020 53